3.733 \(\int x^2 (a+b x)^n \, dx\)

Optimal. Leaf size=60 \[ \frac{a^2 (a+b x)^{n+1}}{b^3 (n+1)}-\frac{2 a (a+b x)^{n+2}}{b^3 (n+2)}+\frac{(a+b x)^{n+3}}{b^3 (n+3)} \]

[Out]

(a^2*(a + b*x)^(1 + n))/(b^3*(1 + n)) - (2*a*(a + b*x)^(2 + n))/(b^3*(2 + n)) + (a + b*x)^(3 + n)/(b^3*(3 + n)
)

________________________________________________________________________________________

Rubi [A]  time = 0.0189535, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {43} \[ \frac{a^2 (a+b x)^{n+1}}{b^3 (n+1)}-\frac{2 a (a+b x)^{n+2}}{b^3 (n+2)}+\frac{(a+b x)^{n+3}}{b^3 (n+3)} \]

Antiderivative was successfully verified.

[In]

Int[x^2*(a + b*x)^n,x]

[Out]

(a^2*(a + b*x)^(1 + n))/(b^3*(1 + n)) - (2*a*(a + b*x)^(2 + n))/(b^3*(2 + n)) + (a + b*x)^(3 + n)/(b^3*(3 + n)
)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x^2 (a+b x)^n \, dx &=\int \left (\frac{a^2 (a+b x)^n}{b^2}-\frac{2 a (a+b x)^{1+n}}{b^2}+\frac{(a+b x)^{2+n}}{b^2}\right ) \, dx\\ &=\frac{a^2 (a+b x)^{1+n}}{b^3 (1+n)}-\frac{2 a (a+b x)^{2+n}}{b^3 (2+n)}+\frac{(a+b x)^{3+n}}{b^3 (3+n)}\\ \end{align*}

Mathematica [A]  time = 0.0252241, size = 57, normalized size = 0.95 \[ \frac{(a+b x)^{n+1} \left (2 a^2-2 a b (n+1) x+b^2 \left (n^2+3 n+2\right ) x^2\right )}{b^3 (n+1) (n+2) (n+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*(a + b*x)^n,x]

[Out]

((a + b*x)^(1 + n)*(2*a^2 - 2*a*b*(1 + n)*x + b^2*(2 + 3*n + n^2)*x^2))/(b^3*(1 + n)*(2 + n)*(3 + n))

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 73, normalized size = 1.2 \begin{align*}{\frac{ \left ( bx+a \right ) ^{1+n} \left ({b}^{2}{n}^{2}{x}^{2}+3\,{b}^{2}n{x}^{2}-2\,abnx+2\,{b}^{2}{x}^{2}-2\,abx+2\,{a}^{2} \right ) }{{b}^{3} \left ({n}^{3}+6\,{n}^{2}+11\,n+6 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*x+a)^n,x)

[Out]

(b*x+a)^(1+n)*(b^2*n^2*x^2+3*b^2*n*x^2-2*a*b*n*x+2*b^2*x^2-2*a*b*x+2*a^2)/b^3/(n^3+6*n^2+11*n+6)

________________________________________________________________________________________

Maxima [A]  time = 1.10318, size = 92, normalized size = 1.53 \begin{align*} \frac{{\left ({\left (n^{2} + 3 \, n + 2\right )} b^{3} x^{3} +{\left (n^{2} + n\right )} a b^{2} x^{2} - 2 \, a^{2} b n x + 2 \, a^{3}\right )}{\left (b x + a\right )}^{n}}{{\left (n^{3} + 6 \, n^{2} + 11 \, n + 6\right )} b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^n,x, algorithm="maxima")

[Out]

((n^2 + 3*n + 2)*b^3*x^3 + (n^2 + n)*a*b^2*x^2 - 2*a^2*b*n*x + 2*a^3)*(b*x + a)^n/((n^3 + 6*n^2 + 11*n + 6)*b^
3)

________________________________________________________________________________________

Fricas [A]  time = 1.62979, size = 188, normalized size = 3.13 \begin{align*} -\frac{{\left (2 \, a^{2} b n x -{\left (b^{3} n^{2} + 3 \, b^{3} n + 2 \, b^{3}\right )} x^{3} - 2 \, a^{3} -{\left (a b^{2} n^{2} + a b^{2} n\right )} x^{2}\right )}{\left (b x + a\right )}^{n}}{b^{3} n^{3} + 6 \, b^{3} n^{2} + 11 \, b^{3} n + 6 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^n,x, algorithm="fricas")

[Out]

-(2*a^2*b*n*x - (b^3*n^2 + 3*b^3*n + 2*b^3)*x^3 - 2*a^3 - (a*b^2*n^2 + a*b^2*n)*x^2)*(b*x + a)^n/(b^3*n^3 + 6*
b^3*n^2 + 11*b^3*n + 6*b^3)

________________________________________________________________________________________

Sympy [A]  time = 1.05871, size = 597, normalized size = 9.95 \begin{align*} \begin{cases} \frac{a^{n} x^{3}}{3} & \text{for}\: b = 0 \\\frac{2 a^{2} \log{\left (\frac{a}{b} + x \right )}}{2 a^{2} b^{3} + 4 a b^{4} x + 2 b^{5} x^{2}} + \frac{a^{2}}{2 a^{2} b^{3} + 4 a b^{4} x + 2 b^{5} x^{2}} + \frac{4 a b x \log{\left (\frac{a}{b} + x \right )}}{2 a^{2} b^{3} + 4 a b^{4} x + 2 b^{5} x^{2}} + \frac{2 b^{2} x^{2} \log{\left (\frac{a}{b} + x \right )}}{2 a^{2} b^{3} + 4 a b^{4} x + 2 b^{5} x^{2}} - \frac{2 b^{2} x^{2}}{2 a^{2} b^{3} + 4 a b^{4} x + 2 b^{5} x^{2}} & \text{for}\: n = -3 \\- \frac{2 a^{2} \log{\left (\frac{a}{b} + x \right )}}{a b^{3} + b^{4} x} - \frac{2 a^{2}}{a b^{3} + b^{4} x} - \frac{2 a b x \log{\left (\frac{a}{b} + x \right )}}{a b^{3} + b^{4} x} + \frac{b^{2} x^{2}}{a b^{3} + b^{4} x} & \text{for}\: n = -2 \\\frac{a^{2} \log{\left (\frac{a}{b} + x \right )}}{b^{3}} - \frac{a x}{b^{2}} + \frac{x^{2}}{2 b} & \text{for}\: n = -1 \\\frac{2 a^{3} \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} - \frac{2 a^{2} b n x \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} + \frac{a b^{2} n^{2} x^{2} \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} + \frac{a b^{2} n x^{2} \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} + \frac{b^{3} n^{2} x^{3} \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} + \frac{3 b^{3} n x^{3} \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} + \frac{2 b^{3} x^{3} \left (a + b x\right )^{n}}{b^{3} n^{3} + 6 b^{3} n^{2} + 11 b^{3} n + 6 b^{3}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(b*x+a)**n,x)

[Out]

Piecewise((a**n*x**3/3, Eq(b, 0)), (2*a**2*log(a/b + x)/(2*a**2*b**3 + 4*a*b**4*x + 2*b**5*x**2) + a**2/(2*a**
2*b**3 + 4*a*b**4*x + 2*b**5*x**2) + 4*a*b*x*log(a/b + x)/(2*a**2*b**3 + 4*a*b**4*x + 2*b**5*x**2) + 2*b**2*x*
*2*log(a/b + x)/(2*a**2*b**3 + 4*a*b**4*x + 2*b**5*x**2) - 2*b**2*x**2/(2*a**2*b**3 + 4*a*b**4*x + 2*b**5*x**2
), Eq(n, -3)), (-2*a**2*log(a/b + x)/(a*b**3 + b**4*x) - 2*a**2/(a*b**3 + b**4*x) - 2*a*b*x*log(a/b + x)/(a*b*
*3 + b**4*x) + b**2*x**2/(a*b**3 + b**4*x), Eq(n, -2)), (a**2*log(a/b + x)/b**3 - a*x/b**2 + x**2/(2*b), Eq(n,
 -1)), (2*a**3*(a + b*x)**n/(b**3*n**3 + 6*b**3*n**2 + 11*b**3*n + 6*b**3) - 2*a**2*b*n*x*(a + b*x)**n/(b**3*n
**3 + 6*b**3*n**2 + 11*b**3*n + 6*b**3) + a*b**2*n**2*x**2*(a + b*x)**n/(b**3*n**3 + 6*b**3*n**2 + 11*b**3*n +
 6*b**3) + a*b**2*n*x**2*(a + b*x)**n/(b**3*n**3 + 6*b**3*n**2 + 11*b**3*n + 6*b**3) + b**3*n**2*x**3*(a + b*x
)**n/(b**3*n**3 + 6*b**3*n**2 + 11*b**3*n + 6*b**3) + 3*b**3*n*x**3*(a + b*x)**n/(b**3*n**3 + 6*b**3*n**2 + 11
*b**3*n + 6*b**3) + 2*b**3*x**3*(a + b*x)**n/(b**3*n**3 + 6*b**3*n**2 + 11*b**3*n + 6*b**3), True))

________________________________________________________________________________________

Giac [B]  time = 1.06967, size = 189, normalized size = 3.15 \begin{align*} \frac{{\left (b x + a\right )}^{n} b^{3} n^{2} x^{3} +{\left (b x + a\right )}^{n} a b^{2} n^{2} x^{2} + 3 \,{\left (b x + a\right )}^{n} b^{3} n x^{3} +{\left (b x + a\right )}^{n} a b^{2} n x^{2} + 2 \,{\left (b x + a\right )}^{n} b^{3} x^{3} - 2 \,{\left (b x + a\right )}^{n} a^{2} b n x + 2 \,{\left (b x + a\right )}^{n} a^{3}}{b^{3} n^{3} + 6 \, b^{3} n^{2} + 11 \, b^{3} n + 6 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^n,x, algorithm="giac")

[Out]

((b*x + a)^n*b^3*n^2*x^3 + (b*x + a)^n*a*b^2*n^2*x^2 + 3*(b*x + a)^n*b^3*n*x^3 + (b*x + a)^n*a*b^2*n*x^2 + 2*(
b*x + a)^n*b^3*x^3 - 2*(b*x + a)^n*a^2*b*n*x + 2*(b*x + a)^n*a^3)/(b^3*n^3 + 6*b^3*n^2 + 11*b^3*n + 6*b^3)